Robust Stereo Matching Using Probabilistic Laplacian Surface Propagation
نویسندگان
چکیده
This paper describes a probabilistic Laplacian surface propagation (PLSP) framework for a robust stereo matching under severe radiometric variations. We discover that a progressive scheme overcomes an inherent limitation for this task, while most conventional efforts have been focusing on designing a robust cost function. We propose the ground control surfaces (GCSs) designed as progressive unit, which alleviates the problems of conventional progressive methods and superpixel based methods, simultaneously. Moreover, we introduce a novel confidence measure for stereo pairs taken under radiometric variations based on the probability of correspondences. Specifically, the PLSP estimates the GCSs from initial sparse disparity maps using a weighted least-square. The GCSs are then propagated on a superpixel graph with a surface confidence weighting. Experimental results show that the PLSP outperforms state-of-the-art robust cost function based methods and other propagation methods for the stereo matching under radiometric variations.
منابع مشابه
Robust stereo matching based on probabilistic Laplacian propagation with weighted mutual information
Conventional stereo matching methods provide the unsatisfactory results for stereo pairs under uncontrolled environments such as illumination distortions and camera device changes. A majority of efforts to address this problem has devoted to develop robust cost function. However, the stereo matching results by cost function cannot be liberated from a false correspondence when radiometric distor...
متن کامل3D Point Cloud Denoising using Graph Laplacian Regularization of a Low Dimensional Manifold Model
3D point cloud—a new signal representation of volumetric objects—is a discrete collection of triples marking exterior object surface locations in 3D space. Conventional imperfect acquisition processes of 3D point cloud—e.g., stereo-matching from multiple viewpoint images or depth data acquired directly from active light sensors—imply non-negligible noise in the data. In this paper, we adopt a p...
متن کاملProbabilistic voxel mapping using an adaptive confidence measure of stereo matching
In this paper, we describe a probabilistic voxel mapping algorithm using an adaptive confidence measure of stereo matching. Most of the 3D mapping algorithms based on stereo matching usually generate a map formed by point cloud. There are many reconstruction errors. The reconstruction errors are due to stereo reconstruction error factors such as calibration errors, stereo matching errors, and t...
متن کاملStereo Matching Using Belief Propagation
In this paper, we formulate the stereo matching problem as a Markov network and solve it using Bayesian belief propagation. The stereo Markov network consists of three coupled Markov random fields that model the following: a smooth field for depth/disparity, a line process for depth discontinuity, and a binary process for occlusion. After eliminating the line process and the binary process by i...
متن کاملDense Stereo Matching with Robust Cost Funtions and Confidence-based Surface Prior
The goal of dense stereo matching is to estimate the distance, or depth to an imaged object in every pixel of an input image; this is achieved by finding pixel correspondences between the source image and one or more matching images. Applications that make dense stereopsis active come from areas such as photogrammetry, remote sensing, mobile robotics, and intelligent vehicles. For instance, man...
متن کامل